Fabrication of Photosynthetic Algae-laden Hydrogel Scaffolds

Green Bioprinting

The “Green Bioprinting” approach is expected to bring an advantage for existing applications of microalgae in the biotechnological field as, e.g. harvesting and separation procedures could be simplified and the co-immobilization of microalgae with (e.g. plant growth promoting) bacteria could be conducted in a spatially organized manner. In addition, this novel approach opens further possibilities for new, future-oriented applications such as the usage of microalgae or other plant cells in the medical field. The cocultivation of algae in close vicinity to human cells could enable a sustained delivery of oxygen or secondary metabolites with therapeutic potential to human cells without the need of external supply. The fabrication of patterned coculture scaffolds can be easily realized by two-channel plotting. [1]

In this study, conducted by GeSiM customers at the Centre for Translational Bone, Joint and Soft Tissue Research at the Technische Universität Dresden in collaboration with partners from the Institute of Bioprocess Engineering at the TU Dresden, a simple geometry was chosen to demonstrate embedding of microalgae in an alginate hydrogel scaffold by 3D plotting.

 

Algae loaden scaffold after 1 day

Algae loaden scaffold after 1 day of culture [1]

Algae loaden scaffold after 12 days

Algae loaden scaffold after 12 days of culture [1]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It was demonstrated that microalgae can be immobilized in 3D alginate-based scaffolds with predesigned geometry. The alginate matrix has proven its suitability for cultivation of the embedded algae—as indicated by cell growth and photosynthetic activity. [1] The immobilization of microalgae in the plotted structures resulted in an enhanced viability and stable growth rates even under suboptimal culture conditions. [2]


[1] A. Lode, F. Krujatz, S. Brüggemeier, M. Quade, K. Schütz, S. Knaack, J. Weber, T. Bley, M. Gelinsky: “Green bioprinting: Fabrication of photosynthetic algae-laden hydrogel scaffolds for biotechnological and medical applications”, Engineering in Life Sciences, Volume 15, Issue 2, pages 177–183, March 2015

 
[2] F. Krujatz, A. Lode, S. Brüggemeier, K. Schütz, J. Kramer, T. Bley, M. Gelinsky, J. Weber: „Green Bioprinting: Viability and growth analysis of microalgae immobilized in 3D-plotted hydrogels versus suspension cultures“, Engineering in Life Sciences, Volume 15, Issue 7, pages 678–688, October 2015

 


UKD_logo

 

Centre for Translational Bone, Joint and Soft Tissue Research
Technische Universität Dresden