

OVERVIEW

"Printing Life to Shape the Future"

INNOREGEN, INC.

- · InnoRegen, Inc. (since April 25, 2018)
- CEO: Jang Soo Suh, MD, PhD, Professor of Kyungpook National University, Korea
- Co-CEO: Young K. Yoon, MD, PhD, Physiatrist
 (Physical Medicine and Rehabilitation)
- Location: 1501, 33 Cheombokro, Donggu, Daegu, 41069 Republic of Korea
- Main business model: Bioinks for 3D bioprinting & additive manufacturing and bioink-based medical devices
- November 2018, Selected as a TIPS (TECH INCUBATOR PROGRAM FOR START UP) project
- · July 2019, Selected as a 'Regulatory Sandbox' project
- · Patent (2), Patent Application (15), PCT (2)

SCIENTIFIC ADVISORY BOARD

- James J. Yoo, MD, PhD, Professor, Wake Forest School of Medicine, USA
- Sang Jin Lee, PhD, Professor, Wake Forest School of Medicine, USA
- · Moon Suk Kim, PhD, Professor, Ajou University, Korea
- Grace Lim, PhD, Professor, Kyungpook National University, Korea
- Tae G. Kwon, MD, PhD, Professor, Kyungpook NationalUniversity, Korea
- · Hoon Je Cho, PhD, CEO of ActnerLAB, Korea

COMPANY MISSION

- InnoRegen, Inc. is committed to develop and provide standardized bioinks that are optimally formulated for bioprinting of cells, tissues, and organs.
- Our mission is to contribute to the advancement of bioprinting/biofabrication field that will change the way medicine is practiced.

Company video:

https://youtu.be/cGLa80bG9Jo

Products video:

https://youtu.be/UbY9XrB2yNo

BIOINK

What is "BIOINK"?

Biomaterials for making artificial organs that can be realized by 3D printer.

Utilization of Functional BIOINK

BACKGROUND STATEMENT

- 3D bioprinting technology has gained much attention recently due to its potential for revolutionizing medical practices in the field of medicine/healthcare.
- Recent research advances have enabled bioprinting of cells, biocompatible materials, and supporting components into complex 3D functional living tissues.
- This developing field promises to address the dire need for tissues and organs suitable for transplantation.

3D bioprinting market scale (North America)

by technology, 2012-2022 (USD Million)

PRODUCTS

Gel4Cell®

With IMPROVED Gel4Cell® Bioink, You Can Now Print with Even More Confidence!

- The InnoRegen's Gel4Cell® formulation has been tested to generate multiple layered 3D tissue constructs that maintain structural integrity over a long-term in vitro. Although Gel4Cell® bioink is specifically formulated for bioprinting applications, it can be used for other research studies that require 3D culture environment.
- · Solution type (1 kit, 10 mL)

Bioprinting of Organized C2C12 Myoblasts

Gel4Cell°

Normalized length of bioprinted construct

Gel4Tissue®

Gel4Tissue Peptide Bioinks for Tissue-specific Regeneration!

- Gel4Tissue bioink formulations derived from pig small intestinal submucosa (SIS) can support the cell proliferation and accelerate the tissue maturation/formation for various tissue engineering applications.
- Gel4Tissue bioink contains various types of collagen, lycosaminoglycans (GAGs), hyaluronic acid, heparan sulfate, chondroitin sulfate, and growth factors such as FGF - 2 and TGF - β.

PRODUCTS

Gel4Cell®-BMP (Peptides)

Gel4Cell®- Peptide Bioinks for Tissue-specific Regeneration!

 Gel4Cell®-BMP is BMP-2 mimetic peptide conjugated to Gel4Cell® bioink and cell compatible & osteoinductive bioink for bone tissue engineering applications.

Printed construct containing human bone marrow - derived stem cells (hMSCs)

Control

Gel4Cell®-TGF (Peptides)

 Gel4Cell®-TGF isTGF mimetic peptide conjugated to Gel4Cell® bioink and cell compatible & chondrogenic bioink for cartilage tissue engineering applications.

Printed construct containing human bone marrow - derived stem cells (hMSCs)

Control

TGF-peptide

PRODUCTS

Gel4Cell®- VEGF (Peptides)

 Gel4Cell®-VEGF is VEGF mimetic peptide conjugated to Gel4Cell® bioink and cell compatible & angiogenic bioink for accelerating vascularization.

Effect of wound healing with Yucatan Pigs

1 Day

14 Day

Polylnks®- PCL, PLA

Gel4Cell®-VEGF Skin patch

PCL

PLA

ε - caprolactone Printing temp.: 65 - 100°C L - lactide Printing temp. : 200 - 250℃

Excellent biodegradability

Powder

Polylnks®-PLCL-W, M, Y

Biodegradable polymer

- · Polylnks®-PLCLW (2-6 weeks)
- · Polylnks®-PLCL M (6 10 weeks)
- · Polylnks®-PLCLY (10-16 weeks)

PRODUCTS

PRODUCTS under Development

Gel4Cell®-TCP (Tricalcium phosphate)

Gel4Cell®- VEGF Skin Patch

· Gel4Cell®-TCP

Gel4Cell®-TCP can be used for bone regeneration and bone graft.

· Gel4Cell®-VEGF Skin Patch

Gel4Cell®-VEGF Skin Patch containing VEGF peptide that helps angiogenesis and has an excellent effect on wound healing.

· Fibrin Gel

Fibrin Gel with excellent biocompatibility without photo-gelation.

· Xeno-free Gel

Xeno-free biohink using human-derived materials

· Gel Dressing

Gel wound dressing helps to regenerate tissues by creating wet environment.

Product Name	Catalog #	Туре	Specific Features
Gel4Cell® (kit), 10 mL	IR - 101	S	Basic formulation
Gel4Cell® - BMP (kit), 10 mL	IR - 102	S	Osteoinductive material
Gel4Cell® - VEGF (kit), 10 mL	IR - 103	S	Angiogenic material
Gel4Cell® - TGF (kit), 10 mL	IR - 104	S	Chondrogenic material
Gel4Tissue® (kit), 10 mL	IR - 105	S	
Col4Cell(kit), 10 mL	IR - 106	S	
PolyInks® - PCL, 50 g	IR - 201	Р	> 2 years
PolyInks® - PLA, 5 g	IR - 202	Р	> 2 years
PolyInks® - PLCL - W, 1 g	IR - 203	Р	2 – 6 weeks
PolyInks® - PLCL - M, 1 g	IR - 204	Р	6 – 10 weeks
PolyInks® - PLCL -Y , 1 g	IR - 205	Р	10 – 16 weeks
Gel-linker (365 nm), 2 mL	IR - 301	S	
Gel-linker (405 nm), 2 mL	IR - 302	S	
S : Solution, P : Powder			

PRODUCTS

Hydrogel - based BIOINKs for cell-based 3D bioprinting

IR - 102 Gel4Cell® - BMP

IR - 103 Gel4Cell® - VEGF

IR - 104 Gel4Cell® - TGF

IR - 105 Gell4Tissue®

IR - 106 Col4Cell

Polymeric BIOINKs for structure-based 3D bioprinting

IR - 201 PolyInks®–PCL powder

IR - 202 PolyInks®-PLA powder

IR - 203 PolyInks®PLCL - W

IR - 204 PolyInks[®]PLCL - M powder

IR - 205 PolyInks®PLCL - Y powder

Headquarter: 1501, 33 Cheombokro, Donggu, Daegu, 41069 Korea R&D Center: 604, 88 Dongnaero, Donggu, Daegu, 41061 Korea

INNOREGEN, INC.

Tel. +82-53-745-5447 **Fax.** +82-53-311-5447

Order. info@innoregen.com www.innoregen.com